Supplementary file 5. Variance inflation factors for multicollinearity

Variance inflation factor

	VIF	1/VIF
Life Expectancy at Birth (total years)	5.93	.169
People using at least basic drinking water services (% of population)	5.715	.175
People using at least basic sanitation services (% of population)	5.135	.195
Domestic general health expenditure per capita (current US\$)	4.835	.207
Population aged between 15 and 64 (% of total population)	3.539	.283
Primary completion rate, total (% of relevant age group)	3.099	.323
Population aged 65 and above (% of total population)	2.562	.39
Measles (number of reported cases)	1.235	.81
Mean VIF	4.006	

Table S1. Random Effects Estimation Results: Impact of Health Expenditure on UHC and Income-Level Interaction

	Hypothesis 1	Hypothesis 2	Nonlinearit y
Variables	Coefficient/Ro bust Standard Errors	Coefficient/Ro bust Standard Errors	Coefficient /Robust Standard Errors
DGG health expenditure per capita	0.0719***	0.0778***	0.1381***
	(0.0125)	(0.0123)	(0.0340)
(DGG health expenditure per capita)^2			-0.0078**
			(0.0036)
Primary completion rate	0.0032***	0.0029***	0.0025***
	(0.0007)	(0.0007)	(0.0007)
Population ages 65 and above (% of total			
population)	-0.0075**	-0.0013	0.0011
	(0.0029)	(0.0026)	(0.0025)

Population ages 15-64 (% of total population)	0.0014	0.0017	0.0028
ropulation ages 15-04 (% of total population)			
	(0.0028)	(0.0028)	(0.0028)
Basic drinking water services (% of population)	0.0026	0.0029	0.0022
	(0.0019)	(0.0018)	(0.0019)
Basic sanitation services (% of population)	0.0009	0.0006	0.0005
	(0.0012)	(0.0012)	(0.0012)
Measles (number of reported cases)	-0.0000	-0.0000	-0.0000
	(0.0000)	(0.0000)	(0.0000)
Life expectancy at birth, total (years)	0.0249***	0.0242***	0.0246***
	(0.0041)	(0.0040)	(0.0039)
HigherIncome x Domestic Expenditure		-0.0000***	-0.0000
		(0.0000)	(0.0000)
LowerMidIncome x Domestic Expenditure		0.0008**	0.0008**
		(0.0003)	(0.0002)
LowerIncome x Domestic Expenditure		0.0087**	0.0072*
		(0.0043)	(0.0040)
Constant	1.3284***	1.3069***	1.2012***
	(0.2381)	(0.2243)	(0.2173)
Overall Rsquare	.8472	.8533	.8560
No. of Obs	696	696	696
No. of Groups	169	169	169
Potoronco Dummy is Middle income Country			
Reference Dummy is Middle income Country			

Reference Dummy is Middle income Country

The results from Equation 4a-c estimations using random effects models provide insights into the factors affecting UHC across different income levels of countries and test for non-linear effects of health expenditure on UHC.

Hypothesis 1 (Impact of Health Expenditure on UHC):

^{*} p<.1, ** p<.05, *** p<.001

• **DGG** health expenditure per capita has a significant positive effect on UHC (Coefficient = 0.0719, p < 0.001), indicating that as health expenditure increases, UHC also tends to improve. This strong association suggests that higher per capita spending in health leads to better coverage outcomes.

Hypothesis 2 (Impact of Income Level on UHC):

- **DGG health expenditure per capita** continues to show a significant positive effect (Coefficient = 0.0778, p < 0.001), slightly stronger than in Hypothesis 1.
- Interactions between income levels and domestic expenditure show mixed results:
 - **HigherIncome x Domestic Expenditure**: The coefficient is negative and significant (Coefficient = -0.0000, p < 0.001), indicating that higher income countries may see diminishing returns from additional health spending.
 - LowerMidIncome x Domestic Expenditure: Shows a positive relationship (Coefficient = 0.0008, p < 0.05), suggesting that lower-middle-income countries benefit moderately from increases in health spending.
 - LowerIncome x Domestic Expenditure: Also positive (Coefficient = 0.0087, p < 0.05), implying that low-income countries benefit significantly from increased health expenditure, possibly because of the larger gaps in health coverage that need to be addressed.

Nonlinear Hypothesis (Non-linear Relationship between Health Expenditure and UHC):

- **DGG health expenditure per capita** shows a much stronger positive effect on UHC in the non-linear model (Coefficient = 0.1381, p < 0.001).
- The squared term of health expenditure ((DGG health expenditure per capita)^2) is negative and significant (Coefficient = -0.0078, p < 0.05), indicating a diminishing return effect; as health spending increases, the incremental benefits on UHC decrease.