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Abstract
Background: The novel coronavirus (COVID-19) is considered as the most life-threatening 
pandemic disease during the last decade. The individual nutritional status, though usually 
ignored in the management of COVID-19, plays a critical role in the immune function and 
pathogenesis of infection. Accordingly, the present review article aimed to report the effects of 
nutrients and nutraceuticals on respiratory viral infections including COVID-19, with a focus 
on their mechanisms of action. 
Methods: Studies were identified via systematic searches of the databases including PubMed/
MEDLINE, ScienceDirect, Scopus, and Google Scholar from 2000 until April 2020, using 
keywords. All relevant clinical and experimental studies published in English were included. 
Results: Protein-energy malnutrition (PEM) is common in severe respiratory infections and 
should be considered in the management of COVID-19 patients. On the other hand, obesity 
can be accompanied by decreasing the host immunity. Therefore, increasing physical activity at 
home and a slight caloric restriction with adequate intake of micronutrients and nutraceuticals 
are simple aids to boost host immunity and decrease the clinical manifestations of COVID-19.
Conclusion: The most important nutrients which can be considered for COVID-19 management 
are vitamin D, vitamin C, vitamin A, folate, zinc, and probiotics. Their adequacy should be 
provided through dietary intake or appropriate supplementation. Moreover, adequate intake of 
some other dietary agents including vitamin E, magnesium, selenium, alpha linolenic acid and 
phytochemicals are required to maintain the host immunity.
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ARTICLE INFO

Review

Introduction
The global outbreak of coronavirus disease 2019 
(COVID‐19) has reached pandemic proportions, 
heightening public health concern around the world. 
Coronaviruses (CoVs), the single-stranded RNA viruses, 
have large, positive and enveloped senses that can affect 
both humans and animals.1

COVID-19 is the third serious coronavirus outbreak 
in the world following severe acute respiratory syndrome 

coronavirus (SARS-CoV) and Middle East respiratory 
syndrome coronavirus (MERS-CoV). According to the 
latest statistics of World Health Organization (WHO), 
there are more than 99 million confirmed COVID-19 
cases and more than 2 000 000 deaths due to COVID-19 
around the world.2

Clinical manifestations of COVID-19 range from mild 
symptoms to critical illness and death.3,4 Frequently 
reported symptoms of infected patients include fever 
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(77%–98%), cough (46%–82%), myalgia or fatigue (11%–
52%), and difficulty of breath (3%-31%) at the onset of 
illness, which can progress to severe lung injury and 
respiratory distress syndrome.3,5-7

Several host-related factors can affect the pathogenicity 
of COVID-19 including age, genetics, immunity, 
psychosocial status and especially existing comorbidities. 
However, another important variable is nutritional status, 
usually ignored in the epidemiological studies.8 It was 
well-acknowledged that malnutrition; e.g., specific dietary 
deficiencies or severe weight imbalance (including both 
underweight and overweight/obesity) may affect the 
consequences of viral infections.9-16 Actually, the idea that 
malnutrition makes a subject prone to viral infection first 
emerged in the West about 200 years ago.17,18 Researchers 
indicate that host nutritional status not only affects the 
immune function of the body, but also may have some 
direct effects on the viral genome and its virulence.18 

Therefore, assessment of the host nutritional status before 
and during an infectious disease is of important value that 
might influence the recovery rate. 

Regarding the global pandemic of COVID‐19, preventive 
policies such as applying public health principles and 
nutritional support are crucial at this time. Therefore, the 
present review article aimed to outline nutritional support 
for the prevention and treatment of COVID-19, focusing 
on the role of energy, macronutrients, and antiviral 
micronutrients and nutraceuticals.

Materials and Methods
Searches were performed in PubMed/MEDLINE, 
ScienceDirect, Scopus, and Google Scholar databases 
from 2000 until July 2020 using the following keywords 
based on MeSH terms. Generally, a topic-centric search 
was conducted to write each section. All relevant clinical 
and experimental studies published in English were 
included. The search terms included “immunity” OR “ 
viral infection” OR “ COVID-19” AND “nutrition” OR 
“antioxidant”; “vitamin D”; “vitamin A”; “vitamin C”; “folic 
acid”; “zinc”; “omega 3”; “protein”; “energy”; “probiotic”; 
“prebiotic”; “phytochemical”. These search items were 
used for the relevant sections of the review. Data were 
extracted from the included manuscripts by one author 
(MSA). Two other authors checked the accuracy of the 
data extracted (NL, VEA). 

Energy
Protein-energy malnutrition (PEM), which is associated 
with low body weight and loss of both lean body mass and 
adipose tissue is characterized as “the most common cause 
of immunosuppression worldwide”.9 It was reported that if 
PEM is accompanied by wasting, which is often the case, 
it can decrease the function of natural killer (NK) cells in 
both humans and mice14 and increase the mortality rate in 
influenza-infected mice.19

Generally, bacterial and viral infections are usually 
associated with increasing metabolic rate and energy 

requirements along with anorexia which exacerbates this 
energy demand.9,20 During the COVID-19 pandemic, it has 
been reported that most of the infection-related mortality 
occurs in the elderly patients mainly due to malnutrition 
and other comorbidities.21 Although aging is associated 
with a slight decrease in total lymphocytes number and 
some changes in T-cell response,22-24 this higher mortality 
rate due to COVID-19 may be justifiable by the presence 
of PEM. 22

In this regard, energy requirement of an infected 
person with COVID-19 increases slightly, like any other 
viral infection especially during the acute phase of the 
infection.9,25-28 It is ideal to measure the energy expenditure 
using the doubly labeled water as a gold standard 
method.29 However, this is not practical in all settings and 
it is generally recommended that energy requirement be 
calculated carefully and individually, based upon a slight 
increase during the fever and acute respiratory distress as 
there is a hyper-metabolic state in both conditions.27,28

Current energy recommendations during lower 
respiratory infections and acute respiratory distress are 30 
to 35 kcal/kg ideal body weight (IBW) or resting energy 
expenditure (REE) ×1.2-1.4 (kcal). Fever also increases 
REE by approximately13% for each degree above 37°C.27,28 
It should be mentioned that regular nutritional assessment 
of hospitalized patients is very important to prevent the 
consequence of over-feeding (e.g., CO2 overproduction 
and fatty liver) or under-feeding (e.g., increasing morbidity 
and mortality rate and pulmonary cachexia).27,28

If the measurement of VCO2 is not possible directly, 
body weight is used for the estimation of energy 
requirements, as below: 25–30 kcal/kg/d for non-obese 
and 21 kcal/kg/d for overweight, 11–14 kcal/kg/d for 
obese critically ill patients.30

The adequacy of food intake should be thoroughly 
assessed in hospitalized patients with COVID-19 
pneumonia.27,28 Parenteral nutrition (PN) should start 
if enteral feeding is not possible or adequate. On the 
other hand, the worldwide outbreak of COVID-19 can 
be unintentionally accompanied by increasing anxiety, 
overeating and inactivity in the societies which cause 
people at risk of obesity. It was reported that obese people 
are at higher risk of developing either respiratory tract or 
urinary tract infections, compared to the normal weight 
people which highlights the important of physical fitness.15 

Therefore, as a prevention strategy, it is recommended 
that people avoid the excessive energy intake and 
ensure sufficient nutrients supply through healthy food 
preferences. Overall, avoiding under- nutrition or over- 
nutrition seems to be essential in case of COVID-19 
prevention or treatment.

Macronutrients
It was shown that the amount and kind of macronutrients 
can change the number and function of immune cells 
in response to bacterial or viral agents.31 The other 
mechanism for their modulation of immune function 
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may be through the changes in the gut microbiota.32 The 
roles of each macronutrient in immunity are presented in 
detail, as below:

Protein
Regarding the hyper-metabolic feature of severe 
respiratory tract infections like COVID-19, restricting the 
protein intake can lead to malnutrition which adversely 
affects lung structure, elasticity, and function.27,33 The 
amount of protein intake can also directly impact 
the immune system. Based on the results of some 
experimental studies, feeding a low-protein diet, followed 
by infection with influenza virus was accompanied by 
decreased number and function of CD8+ T cells as well 
as NK cells, higher viral titers, and finally, increased 
mortality of animals.34-36 It should be noticed that older 
people are at higher risk of protein deficiency37-41 which 
may make them prone to longer hospitalization due to 
the infection.41 Therefore, appropriate protein intake of 
1.2 to 1.5 g/kg IBW (15%-20% of calories) with at least 
50 percent from high biological value (HBV) proteins is 
recommended for adults and older people to maintain 
their respiratory muscle strength and support immune 
function during infection with COVID-19.26,27 However, 
diet should be individually planned, considering other 
comorbidities of patient. 
According to American Society for Parenteral and 
Enteral Nutrition (ASPEN), for critically ill patients 
with COVID-19 who need enteral nutrition (EN), the 
recommended protein intake is 1.2–2.0 g/kg/d for non-
obese patients (based on actual body weight) and 2-2.5 g/
kg/d for obese patients (based on IBW).42

Carbohydrates
According to limited animal studies,32,43 significant 
restriction of carbohydrates and sugar intake can 
exacerbate viral outcomes. This happens because the 
immune cells like CD4+ and CD8+ T cells, involved in 
the pathogen clearance, supply most of their energy 
from glucose and anaerobic glycolysis.44 On the other 
hand, a high-carbohydrate diet increases CO2 production 
and respiratory quotient. Therefore, a balanced ratio of 
carbohydrates intake (40% to 50% of calories), mostly 
as the complex carbohydrates along with decreasing 
simple sugar is crucial in medical nutrition therapy of 
COVID-19 pneumonia. In addition, adequate intake 
of functional fibers (prebiotics such as beta-glucan and 
fructo-oligosaccharides) from dietary sources (e.g., oat, 
wheat, banana, onions, garlic, and tomato) has additional 
health benefits on the gut microbiota and immune defense 
system.45

For those with severe COVID-19 symptoms, supportive 
nutrition may be required. EN is preferred over PN and 
is usually well-tolerated by the patients. The amount of 
carbohydrate in enteral feeding formula is dependent 
upon patient’s state (e.g., glycemic control, ventilator 
dependency) and usually consists 30%-50% of non-

protein calories.46 However, glucose should not exceed 5 
mg/kg/min.47

Fats
New coronavirus can cause severe lung injury and 
acute respiratory distress syndrome (ARDS).48 During 
this acute-phase infection, increasing dietary fat intake 
helps to decrease CO2 production as well as ventilator 
dependency. According to the dietary recommendations 
for ARDS and pneumonia, an enteral feeding with 30% to 
45% of calories from fat maybe helpful.27,28 However, the 
type of fatty acid is very important in the inflammatory 
and immunomodulatory responses of host to a microbial 
agent.49,50

Adequate intake of omega-3 fatty acids may protect host 
against viral and bacterial infections. 51 However, there are 
some controversial data about their efficacy in different 
bacterial and viral infections.52-55 A recent review article 
on the current experimental studies and clinical trials 
reported that intake of long-chain omega-3 fatty acids as 
docosahexaenoic acid (DHA) and eicosapentaenoic acid 
(EPA) was effective in some extracellular infectious agents 
including Escherichia coli and Streptococcus pneumonia 
while had adverse effects on the intracellular infectious 
agents like Mycobacterium tuberculosis, Influenza virus 
and Herpes simplex virus. It was due to the modulation 
of immune responses including anti-viral CD8+ T cells 
and their downstream inflammatory cascades after viral 
infection.51,55,56 Therefore, the efficacy of omega-3 long-
chain omega-3 polyunsaturated fatty acids (PUFAs) on 
defense against viral infections is still unclear and needs 
further well-designed randomized clinical trials.

The other key element in medical nutritional 
management of COVID-19 infection with severe lung 
injury and ARDS symptoms is surfactant replacement 
therapy.57,58 Dipalmitoyl-phosphatidylcholine (DPPC) 
is the main component of pulmonary surfactants 
which consists of two palmitic acids, attached to a 
phosphatidylcholine (lecithin) head-group.58 Therefore, in 
addition to the exogenous surfactant replacement therapy, 
enteral feeding with dietary sources of lecithin, including 
egg yolk, meat, milk, and canola oil can be helpful in 
ARDS.59

The amount of fat in EN formula depends on patient’s 
status (e.g., serum triglyceride, ventilator dependency) 
and usually comprises 50%-70% of non-protein calories.47 

It was reported that long-term deficiency of essential fatty 
acids (EFAs) including linoleic acid and ɑ-linolenic acid 
(ALA) can cause the reduction of DPPC level in lung 
tissue.60 However, based on two recent systematic reviews, 
there are some controversies toward the benefits of long-
chain omega 3 fatty acids supplementation on the length of 
mechanical ventilation and mortality rate in adult patients 
with ARDS.61,62 Overall, adequate intake of EFAs and 
appropriate proportion of PUFAs and monounsaturated 
fatty acids (MUFAs) intake within the range of 30% to 
45% of calories from fats can be effective in patients with 
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COVID-19 pneumonia and ARDS symptoms.63

Micronutrients
Vitamin D 
Vitamin D (VitD), also termed cholecalciferol, has a lot of 
functions in the body including the immunomodulatory 
effect.64 The deficiency of the vitamin is more prevalent 
around the world.65 Results of some review articles show 
that low circulating levels of VitD are related to increased 
risk of respiratory viral infections.65-67 However, there 
are some other heterogeneous findings on the protective 
effects of VitD supplementation for respiratory tract 
infections like influenza virus.65,68,69

 It is established that VitD (cholecalciferol) has an 
important role in the transcription of different genes 
through binding to the nuclear VitD receptors (VDRs).70 
VDRs are expressed by many immune cells, following an 
immune signaling. Their bindings to VitD result in the 
modulation of both innate and adaptive immune responses, 
B-lymphocytes, monocytes, macrophages, dendritic cells 
(DCs), and T-cells. This immunomodulatory effect on 
T-cells causes the suppression of the pro-inflammatory 
Th1 and Th17 cells as well as enhancement of regulatory 
T cells.

Increased activation, production, and secretion of pro-
inflammatory cytokines and chemokines like nuclear 
factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) are the main feature of most respiratory viral 
infections.71 Accumulating evidence proposes that a 
subgroup of patients with severe COVID-19 might have 
a cytokine storm syndrome.72 It was reported that one 
of the main immunomodulatory effects of VitD against 
respiratory viruses is increasing the NF-κB inhibitor 
alpha (IκBα) expression.73 Moreover, the active form 
of VitD (1, 25(OH)2 D3) can decrease the expression 
of some cytokines including tumor necrosis factor 
alpha, interleukin 6 (IL-6), and interferon beta (IFN-β) 
and increase the production of IL-37 and human beta 
defensin 2 which have key roles in warding off respiratory 
viruses.70,74

VAD is linked to more inflammation and immune 
activation and low peripheral blood CD4+ T cells.75 Low 
levels of VitD in calves have been correlated with increased 
bovine coronavirus infection.76 Moreover, it was suggested 
that VAD can increase the host susceptibility to influenza 
viral infection.77-79 It should be noticed that infection with 
influenza virus, the novel coronavirus, and SARS-CoV 
have been more abundant in winter, when the circulating 
level of VitD is the lowest.77,80,81

Angiotensin (Ang) II-converting enzyme (ACE2) 
molecule was reported to be the main host cell receptor 
of COVID-19 and plays a critical role in the entry of 
virus into the cell to trigger the final infection.82,83 And, 
it is closely associated with ARDS,84 possibly due to an 
extremely large number of ACE2-expressing cells in 
the lung, especially in Asian males.83 More interestingly, 
chronic VitD deficiency may induce lung fibrosis through 

the activation of the renin-angiotensin system.85

Therefore, VitD supplementation seems to inhibit 
ACE2, consequently, helping to attenuate the lung 
infection. Overall, regarding the limited dietary values, 
it seems that VitD supplementation, aside from its wide-
spread immunological functions, can be considered both 
as a preventive strategy and an anti-ACE2 therapeutic 
agent in the management of COVID-19 infection to 
maintain its serum level at normal range, but avoid the 
vitamin toxicity. 

Vitamin C 
Vitamin C (VitC), also known as ascorbic acid, is an 
antioxidant and free radical scavenger and serves as an 
important cofactor for many enzymatic reactions in the 
body.86 Severe VitC deficiency leads to scurvy disease, 
marked by weakness of collagen proteins, poor wound 
healing, impaired immunity, and increased susceptibility 
to infections.87 Studies have shown that VitC can affect 
the immune system by inhibition of oxidative stress 
generated by infections.88,89 In addition, it has immune-
modulating effects including phagocytic function, T-cells 
transformation and interferon production.90 Clinical trials 
have shown that treatment by VitC reduced duration and 
severity of common cold episodes.91,92 The latest research 
found that though treatment by VitC in patients with 
sepsis and ARDS did not improve the organ dysfunction, 
inflammation and vascular injury. However, mortality rate 
was significantly decreased.93

Leukocytes such as neutrophils and monocytes 
accumulate VitC and have 50- to 100-fold higher 
concentrations than plasma, indicating its significant 
functions in the immunity.94 As VitC attenuates both 
oxidants generation and NFкB activation in dendritic and 
neutrophils,95 the deficiency of the vitamin can result in 
impaired immunity and higher susceptibility to infections. 
In turn, infections significantly impact on VitC levels due 
to enhanced inflammation and metabolic requirements.96 

Moreover, VitC deficiency may affect the ability of 
neutrophils to migrate to the sites of infection.97,98

Patients with severe respiratory infections have lower 
plasma VitC concentrations and treatment by VitC restores 
the plasma VitC levels and ameliorates the severity of the 
respiratory symptoms.99 Additionally, several studies on 
guinea pigs have demonstrated that supplemental VitC 
increases serum levels of C1q complement proteins100-102 
as well as antibodies.103,104 However, no beneficial changes 
in leukocyte function or production have been reported 
by VitC treatment.105-107

While some studies propose VitC as an immune enhancer, 
human studies published to date are contradictory. 
According to a Cochrane systematic review, only two 
of six trials were double-blind, placebo-controlled, and 
randomized controlled that could be applied to evaluate 
the effect of VitC supplementation on the prevention or 
treatment of pneumonia.108 Overall, compared to placebo, 
VitC supplementation had a mild beneficial effect. 

https://lpi.oregonstate.edu/mic/glossary#serum
https://lpi.oregonstate.edu/mic/glossary#complement-system
https://lpi.oregonstate.edu/mic/glossary#antibody
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https://lpi.oregonstate.edu/mic/glossary#placebo
https://lpi.oregonstate.edu/mic/glossary#randomized-controlled-trial
https://lpi.oregonstate.edu/mic/glossary#pneumonia
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However, firm conclusions cannot be elicited from the 
available data due to the highly variable characteristics of 
the study populations and methodological shortcomings. 
A phase II clinical trial is underway by Peng et al (https://
www.clinicaltrials.gov/) from Wuhan to test the efficacy of 
VitC infusion for the treatment of severe acute respiratory 
infection associated with the novel coronavirus. They 
aimed to administer VitC (24 g/d IV) for 7 days to the 
afflicted patients. 

It seems that VitC can help to avoid and cure respiratory 
and systemic infections via the enhancement of the 
immunity. At this time, the potential effect of VitC on 
severe viral respiratory tract infections especially in case 
of the recent COVID-19 epidemic would seem to be 
evaluated by further studies.

Vitamin A 
Vitamin A (VitA) is one of the fat-soluble retinoids 
which deficiency is one of the most common nutritional 
issues in the world.109 This vitamin has a broad range 
of immunological functions. VitA deficiency (VAD) is 
associated with recurrent infections.110 Since VitA helps 
maintain the mucosal barriers of the innate immune 
system. Thus, VAD increases susceptibility to some types 
of infection, such as respiratory and gastrointestinal 
infections.111-114 VAD also results in decreased or altered 
response of T and B cells to a variety of pathogens; 
dysregulated development of type IFN; and changes in 
the number and function of innate immune population, 
including monocytes, NK cells and DC subsets.115,116 Serum 
retinol is inversely associated with serum concentration 
of interleukin-6, the main regulator in the induction 
of the acute-phase response.117 Infections can, in turn, 
lead to VAD by reducing food intake, impairing vitamin 
absorption, increasing vitamin excretion, interfering with 
vitamin utilization, or increasing metabolic requirements 
of VitA. 111

Genetic studies indicated significantly impaired 
inflammatory milieu in the infected lungs of VAD calves, 
with alterations in Th1 and Th17 immune responses, 
and abnormal mucin production. In chickens fed a diet 
slightly deficient in VitA, the risk of infection with the 
infectious bronchitis virus, a kind of coronavirus, was 
more noticeable than in those fed with a VitA-adequate 
diet.118 VitA has been shown to be effective in measles-
associated pneumonia in children.119 However, high-dose 
vitamin A supplements caused modest adverse effects in 
children recovering from pneumonia.120 Therefore, they 
should not be therapeutically used in such patients unless 
there is a clinical evidence of VAD. 

VitA supplementation was studied as a potential 
intervention to accelerate recovery, minimize severity, and 
avoid recurrent episodes of acute infections of the lower 
respiratory tract.121,122 However, it is not beneficial in those 
with lower respiratory infections, such as pneumonia 
123 and supplementation may actually aggravate the 
condition.120,124,125 As VitA can inhibit viral replication 

through the up-regulation of the innate immunity,126 it 
seems that VitA might be promising in the prevention 
and treatment of lung infections stemmed from 
COVID-19. However, due to potential adverse effects, 
VitA supplements should be administered for those with 
evidence of VAD.127

Vitamin E 
Vitamin E (VitE), as an antioxidant, protects membranes 
from oxidative damage by incorporating into cell 
membranes.128 The α-tocopherol form of VitE protects 
against peroxidation of PUFAs which can potentially 
bring about abnormal immune responses.129 Therefore, 
VitE is one of the most effective nutrients known to 
modulate immune function and reduce the risk of 
respiratory infections and asthma. Owing to its ability to 
bind free radicals, VitE plays an important function as an 
antioxidant.130,131 Immune cells are enriched in VitE, likely 
to protect membranes against oxidative damage produced 
as a result of their high metabolic activity and defensive 
function.132

Animal and human studies have demonstrated that VitE 
deficiency impairs both innate and adaptive immunity.133 

It leads to immune system dysfunction and there is 
evidence that VitE supplementation, beyond current 
dietary guidelines, enhances innate immune functions 
including NK cell activity and macrophage phagocytic 
capacity.134 VitE may also exert its influence by modulation 
of inflammatory mediators like prostaglandin E2 and 
cytokines.132

In a trial, daily supplementation of 200 mg of 
α-tocopherol for 235 days to healthy older adults increased 
the production of antibodies in response to tetanus 
and hepatitis B vaccines and improved T lymphocyte-
mediated immunity.135 In another interventional study, 
supplementation with 200 mg/d of α-tocopherol for three 
months to older adults significantly enhanced mitogen-
induced lymphocyte proliferation and interleukin-2 
(IL-2) production and improved NK cytotoxic activity, 
neutrophil chemotaxis, and phagocytic response, 
compared to baseline.136 Daily supplementation of 617 
nursing-home residents (≥65 years of age) with 200 
IU of synthetic α-tocopherol for one year significantly 
lowered the risk of affliction with upper respiratory tract 
infections, particularly the common cold, but had no 
effect on lower respiratory tract (lung) infections.135,137-140 

Though studies have reported immune effects at dosage 
of 200–800 mg/d,141 the optimum intake of VitE required 
to enhance immune system has not been demonstrated, 
likely due to prior VitE status and the presence or absence 
of other conditions.142

 
Vitamin B12
Vitamin B12 (VitB12 or cobalamin) acts as a human 
immunity modulator; it stimulates the T-lymphocytes 
production involved in cellular immunity, restores the 
atypically increased ratio of CD4/CD8 and retains the 

https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/
https://www.medicinenet.com/upper_respiratory_infection/article.htm
https://www.medicinenet.com/upper_respiratory_infection/article.htm
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https://lpi.oregonstate.edu/mic/glossary#pneumonia
https://lpi.oregonstate.edu/mic/glossary#antibody
https://lpi.oregonstate.edu/mic/glossary#hepatitis
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https://lpi.oregonstate.edu/mic/glossary#lymphocyte
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https://lpi.oregonstate.edu/mic/glossary#neutrophil
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lymphocyte subgroups count in the adequate range.141,143 

It supports both antibody-mediated and cellular 
immunity.144 VitB12 deficiency reduces the lymphocytes 
and CD8+ cells number and the CD4 cells proportion, 
leading to an unusual high ratio of CD4+/CD8+, immune 
defense depression against bacteria and viruses and 
repressed NK cells.143

Adequate vitamin dosage in deficient individuals leads to 
increased percent of CD3 and CD7 cells and their absolute 
number. Additionally, the function of lymphocytes and NK 
cells are restored, and IgA, IgG, and IgM concentrations 
are improved after treatment144 Adults (aged >65 years) 
with normal immunity but with low serum VitB12 
had an abnormal antibody response to pneumococcal 
polysaccharide vaccine.145 Supplementation with VitB12 
along with folate and VitE in the elderly people increased 
NK cell cytotoxic activity.146 These few studies show the 
importance of a sufficient VitB12 status to maintain an 
adequate immune response, especially in the elderly who 
have a high percentage of deficient serum VitB12 level. 147

Vitamin B9 (folate)
Folate (VitB9 or folacin) along with vitamins B6 and 
B12 plays a vital role in the synthesis of nucleic acid and 
protein. Insufficient amount of folate leads to considerable 
alteration in the immune response.144,148 In folate 
deficiency, the response of antibody to different antigens 
is reduced, since it results in lower proteins level involved 
in immune function activation and regulation, whereas 
a sufficient proportion with adequate pro-inflammatory 
cytokines supports an efficacious immune response.149,150 

It was demonstrated that the administration of folate 
supplements to the elderly improves overall immune 
function by alteration of the age-associated decrease 
in NK cell activity supporting a Th1 response; thus, 
providing protection against infections.151 Interestingly, 
the results of a most recent study have proposed folate 
as a potential compound in the prevention or control of 
COVID-19 especially in the early stages of disease. In 
fact, this is the first time that has introduced folate as an 
effective inhibitor of furin enzyme activity.152 The furin 
protein is associated with increasing the pathogenesis of 
most of bacterial and viral infections. It was proposed 
that the entrance of coronaviruses into cells is mediated 
through the spike proteins (S proteins) on their surface 
after cleavage into the S1 and S2 domains by furin 
enzyme. It should be mentioned that after this cleavage, 
the S1 subunit binds to the ACE2 receptor, the main host 
cell receptor of COVID-19, and then enters the lung cells. 
Therefore, supplementation with folate can be considered 
as a safe and promising treatment for patients with 
COVID-19.152

Vitamin B6
Vitamin B6 (VitB6) or pyridoxine has a very important 
role in general cellular metabolism.153,154 Cytokines and 
antibodies are made up of amino acids and need vitamin 

B6 as a coenzyme in their metabolism; therefore, the effects 
of VitB6 on immune function cannot be overlooked.144,155 

In previous studies, it was revealed that VitB6 deficiency 
impairs the maturation and growth of lymphocytes, 
and the production of antibodies and T-cells activity. 
The mitogenic response of lymphocytes is weakened by 
depletion of dietary VitB6 in elderly subjects and restored 
by VitB6 administration. Decreased antibody delayed-
type hypersensitivity (DHT) response, NK cell activity, 
IL-1β, IL-2, IL-2 receptor and lymphocytes proliferation 
were observed due to deficiency in VitB6 levels.156-158

Overall, further studies are warranted to evaluate the 
efficacy of VitB complex intake at dosages higher than the 
current recommended dietary allowance (RDA) for the 
prevention and/or reverse of immune system impairments.

Zinc 
Zinc (Zn) acts as a powerful antioxidant and anti-
inflammatory agent.159 It has a vital role in both innate and 
adaptive immune cells, because some cellular functions 
such as DNA replication, RNA transcription, cell division, 
and cell activation are Zn-dependent. Zn is also crucial 
for normal development and function of neutrophils 
and natural-killer cells.160 Zn deficiency leads to thymic 
atrophy, lymphopenia, impaired cellular and antibody-
mediated immune responses and increases susceptibility 
to a variety of pathogens and infectious diseases.161

Some aspects of immunity can be suppressed by even 
marginal Zn deficiency, which is more common than 
severe Zn deficiency,124 particularly in the elderly due to 
their inadequate dietary intake.162,163 In addition, serum 
Zn levels decline with age.164,165 Several randomized 
controlled trials demonstrate that supplementation 
with low to moderate doses of Zn (ranging from 10 to 
45 mg zinc/day) in healthy elderly individuals improves 
immune function, such as increased number of cytotoxic 
T lymphocytes and NK cells, reduced number of activated 
T helper cells, and lower incidence of infections.166-168 

Velthuis et al169 showed that increasing the intracellular 
Zn2+ concentration with zinc-ionophores like pyrithione 
(PT) can efficiently impair the replication of some RNA 
viruses, including influenza virus. In their study, it was 
demonstrated that the combination of Zn2+ and PT at low 
concentrations can inhibit the replication of SARS-CoV 
in cell culture.169 Another systematic review demonstrated 
that zinc supplementation was significantly associated with 
reducing rates of pneumonia and therefore, recommended 
supplementing zinc intake in deficient populations. 170

Although several studies favor the vital role of Zn in 
immunity enhancement, on the other side, there are few 
preliminary studies,171,172 implying the possible adverse 
effects of Zn in cell cultures. For instance, Phillips et al 
reported that neurovirulent murine coronavirus JHM.
SD uses cellular Zn metalloproteases for virus entry and 
cell-cell fusion.171 They found that inhibition of matrix 
metalloproteinase and metalloprotease (ADAM)-family 
Zn metalloproteases markedly decreased both entry and 
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cell-cell fusion. They concluded that Zn metalloproteases 
must be considered potential contributors to coronavirus 
fusion. In this regard, it is worth-mentioning that ACE 
which COVID-19 as well as SARS-CoV were shown to 
use as its main entry receptor,66 belongs to the M2 Zn 
metalloproteinase family.173 Moreover, in the study of Tan 
et al, it was proposed that binding of the 50-untranslated 
region of coronavirus RNA to Zn finger CCHC-type and 
RNA-binding motif 1 enhances both viral replication and 
transcription.172 Therefore, in the light of current studies, 
it appears that adequate intake of Zn is essential for proper 
function of immune system; however, there might be some 
hazards in case of excessive Zn intake. Overall, precautions 
should be taken when it comes to supplementation of Zn 
for the prevention or treatment of infections. 

Iron
Iron is an essential micronutrient for cellular energy 
metabolism, oxygen transport, and several enzymatic 
reactions.174 The iron-containing proteins are needed 
for crucial cellular and organismal actions including 
mitochondrial respiration, oxygen transport, cell signaling, 
nucleic acid replication and repair, and host defense.175 An 
adequate amount of iron is critical for multiple immune 
functions, including the differentiation and proliferation 
of T-cells and generation of reactive oxygen species (ROS) 
that kill infectious agents. However, iron is also required 
by most pathogens for replication and survival. During an 
acute inflammatory response, serum iron concentration 
depresses, while level of ferritin (the iron storage protein) 
increases, proposing that sequestration of free iron by 
host proteins prevents acquisition by pathogens176; this is 
called nutritional immunity, which is an important host 
response to infections. 177

Iron ions serve as the catalytic portion of enzymes 
that mediate redox reactions in key cellular processes, 
like DNA replication and energy production.178 Fe (III) 
prevents replication of DNA and RNA viruses.179 During 
viral infection, ROS and superoxide hydrogen production 
may happen. Iron can be easily oxidized and reduced, 
making it necessary to be able to catalyze the exchange 
of hydrogen peroxides to free radicals.180 Iron-deficient 
children and iron deficiency anemia has been reported 
as a risk factor for the development of recurrent acute 
respiratory tract infections.181 Furthermore, lactoferrin as 
the iron-binding glycoprotein shows inhibitory actions 
against a different range of viruses in vitro. Indeed, it was 
observed that lactoferrin consumption might protect 
the host from virus infections by preventing the virus 
attachment to the cells, the virus replication in the cells, 
and improvement of systemic immune function.182

Excessive iron can also be harmful, because of its ability 
to favor animal viral infections. The metal is required for 
host cell to synthesize virions which can weaken the cell 
function defense and raise oxidative stress. In humans and 
animal models, viral infections can lead to up-regulation 
of the iron-repressing defense system. Iron chelators are 

perfect candidates for use in co-infection and excess iron 
states because they have been effective in inhibition of HIV 
replication.183 Overall, it seems essential to restrict iron 
intake in times of either potential or existing infections 
to deprive the pathogens of iron, but to have an adequate 
intake based on RDA to maintain an optimum immune 
response and avoid the possibility of excess amounts of 
iron which may induce iron toxicity.184

Selenium 
Selenium (Se) is an important trace element with anti-
inflammatory and antioxidant effects.185 Low serum Se 
level has been correlated with poor immune function 
and increased risk of mortality. Adequate Se intake has 
antiviral effects.186 The patients diagnosed with influenza 
virus present a noticeable increase in protein, lipid, and 
DNA oxidation products in plasma and urine.187-190 In 
some types of RNA viruses, oxidative stress prompts fast 
mutation rates - frequently to virulence.191 Se deficiency 
impairs the innate and acquired immunity unfavorably 
influencing both cell-mediated immunity and humoral 
immunity (i.e., antibody production).192,193 Sequencing of 
virus genes isolated from Se-deficient and Se-adequate 
mice showed a strong effect of the Se status on virus 
mutation.194 Se deficiency also seems to enhance the 
virulence or progression of some viral infections.195,196 

However, Se supplementation could ameliorate cell-
mediated immunity in deficient individuals and enhance 
the immune response to viruses; on the other hand, 
Se supplementation may aggravate allergic asthma 
and weaken the immune response to parasites.197,198 

Meanwhile, dramatic evidence demonstrates that Se 
plays a role in the regulation of cytokines and eicosanoids 
production that adjust the immune response.199 Overall, Se 
plays an important role in balancing the redox state, and 
helping to protect the host from oxidative stress induced 
by inflammatory reactions and anti-microbial effects of 
macrophages. Consequently, Se supplementation might 
be a helpful choice for the prevention or treatment 
of different types of viruses such as COVID‐19 virus. 
However, Se status of the host is an important factor, when 
considering Se supplementation.197

Water and electrolytes
It is usually recommended that higher fluid intake can 
prevent respiratory infections. Patient with COVID-19 
symptoms or pneumonia can also benefit from higher 
intake of fluid unless contraindicated (such as edema or 
diarrhea). The recommended amount is usually 1 mL/kcal 
water or 2-3 L/d, being advised to drink between meals to 
prevent food reflux or aspirations.27,28

It was reported that patients with lower respiratory tract 
infections especially children are at risk of developing 
hyponatremia due to possible inappropriate antidiuretic 
hormone secretion (ADH) or excessive administration 
of free water or lower sodium intake.200-202 Moreover, 
as respiratory acidosis may occur following severe 
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respiratory symptoms, serum electrolytes balance must 
be checked for hospitalized patients with COVID-19. 
The hypomagnesemia and hypophosphatemia should 
be avoided because magnesium and phosphorous both 
act as important intracellular buffers and contribute to 
the production of adenosine triphosphate (ATP). Their 
serum levels should be maintained at normal range, since 
high serum magnesium concentration (higher than 4-5 
mmol/L) as well as severe hypophosphatemia (<1 mg/dL) 
can decrease respiratory function.27,203-204

Phytochemicals
Plants provide us with a range of therapeutic metabolites 
that have the ability to prevent viral replication by 
controlling viral absorption, attaching to cell receptors, and 
inhibiting virus penetration into the host cell.205 Flavonoids 
are examples of metabolites which exhibit antiviral 
activity. Specially, luteolin, apigenin, quercetin, daidzein, 
amentoflavone, epigallocatechin, epigallocatechin gallate, 
gallocatechin gallate, puerarin, and kaempferol were 
found to hinder the SARS-CoV 3CL pro-proteolytic 
activity.206-209 Consequently, the antiviral effect is assumed 
to be specifically related to repress the SARS-CoV 3CLpro 
activity in some cases. Additionally, experimental study 
showed that isobavachalcone, quercetin 3‐β‐d‐glucoside 
herbacetin, and helichrysetin were reported to block 
the MERS‐CoV 3CLpro enzymatic activity. Also, some 
flavonoid derivatives with carbohydrate or hydrophobic 
molecule in their core structures have been shown to yield 
a good inhibitory function.210

Resveratrol as a plant compound with antiviral activity 
was reported to stimulate ERK1/2 signaling pathway and 
activate cell proliferation and improve SIR1 signaling, 
which are associated with DNA repair and cellular 
survival, following DNA damage.211-214 Moreover, MERS-
CoV infection can lead to the inflammatory cytokines 
production while, resveratrol might decrease the 
inflammation via preventing the NF-κB pathway.215-216 In 
a study by Lin et al, it was observed that after MERS-CoV 
infection, the cleaved caspase 3 levels were reduced by 
resveratrol.215 They believed that the mentioned changes 
might be due to the caspase 3 cleavage direct inhibitions 
by reservation of the cell survival as well as the upstream 
event inhibition, necessary for caspase 3 cleavages or the 
decrease in virus-induced apoptosis by resveratrol.217

Overall, studies support the favorable effects of 
phytochemicals especially flavonoids and resveratrol 
in immunity enhancement following viral infections. 
Though further studies are warranted in case of antiviral 
impacts of phytochemicals, it appears that their adequate 
intake can contribute to boost the immune system, 
particularly in COVID-19.

Probiotics 
Probiotics are “live strains of strictly selected 
microorganisms which, when administered in adequate 
amounts, confer a health benefit on the host”.218 Common 

instances are the Lactobacilli and Bifidobacteria species. 
Ingested live probiotics can modulate immune functions 
through the interaction with several receptors on intestinal 
epithelial cells and other gut-associated immune cells, 
including M-cells and DCs.219 Probiotics have positive 
effects on gastrointestinal disorders and allergic diseases. 
Also, the effectiveness of probiotics for diseases treatment 
such as type 2 diabetes220-221 and obesity has been proven.222

Probiotics have effects on both the innate and acquired 
immune systems and have the potential to reduce the 
infections severity in the upper respiratory as well as 
gastrointestinal tracts.223-225 Studies have revealed that 
probiotics could prevent viral attachment through 
competitive inhibition, if they were able to bind to viral 
receptors at the cells surface.226 In a study by Freitas et al, it 
was reported that a strain of Bacteroides thetaiotaomicron 
and the Lactobacillus casei strain DN114001 produce 
a compound that partly keep epithelial cells from the 
infection of rotavirus in vitro by modifying the cells apical 
glycosylation pattern.227,228 It is also probable that probiotics 
indirectly affect viruses through changing the cells state, 
and triggering innate and/or adaptive immunity.223,229 A 
study showed that Enterococcus faecium acts as beneficial 
antiviral agent by inhibiting transmissible gastroenteritis 
virus replication in swine testicle cells. The following 
overlapping mechanisms might lead to the detected fall in 
virus growth: inactivation or absorptive trapping of virus 
particles by the probiotic bacteria surface components, 
direct interfering with the attachment of virus and the 
stimulation of antiviral cytokines IL-6 and IL-8.226

Interestingly, the intestinal barrier can be reinforced 
by probiotics through the rise in mucins, the tight 
junction proteins and the Paneth and Goblet cells.230 The 
regeneration of mucosa is improved by mucin ability 
to inhibit the attachment of virus to epithelial cells and 
stop the virus replication. Probiotics also have the ability 
to modify the functions of epithelial cells, CD4+ CD8+ 
T lymphocytes DCs, NK cells, and induce secretory 
immunoglobulins synthesis, helping to deactivate a 
virus.231,232 Although the scientific evidence is too weak 
to favor the use of probiotics to reduce respiratory 
infections and improve vaccination response, especially 
in the elderly,226-233 probiotics are projected to be among 
the rational adjunctive choices for the treatment of several 
viral diseases. 

Conclusion
A summary of energy and macronutrients requirements 
for the management of COVID-19 is shown in Box 1. 
According to the studies reviewed, it is recommended 
to provide a relatively high-energy diet for patients 
afflicted with COVID-19 pneumonia, due to their 
increased metabolic demands. On the other hand, for un-
afflicted persons, quarantined at home, we recommend 
to avoid sedentary lifestyle and excessive energy intake 
which can lead to the obesity and decreased immunity. 
Overall, avoiding undernutrition or over-nutrition by 
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ensuring sufficient nutrients supply through healthy food 
preferences seems to be essential in case of COVID-19 
prevention or treatment. 

Appropriate protein intake of 1.2 to 1.5 g/kg IBW 
(equal to 15%-20% of calories) with at least 50 percent 
from HBV proteins for adults is recommended to avoid 
more respiratory complications and support immunity 
during infection with COVID-19. However, diet should 
be individually planned, considering other comorbidities 
of patients. A balanced ratio of carbohydrates (40% to 
50% of calories) mostly as the complex carbohydrates and 
adequate intake of functional fibers is critical in medical 
nutrition therapy of COVID-19 pneumonia.

Adequate intake of EFAs and appropriate PUFAs and 
MUFAs intake within the range of 30% to 45% of calories 
from dietary fat can be effective in the management 
of COVID-19 pneumonia with ARDS symptoms by 
decreasing CO2 production and ventilator dependency. 
Although omega 3 fatty acids are regarded as anti-
inflammatory food agents, the evidence is not suggestive 
for their administration after viral infection. This is 
because they can modulate anti-viral CD8+ T cells and 
their downstream inflammatory cascades.

Patient with COVID-19 symptoms or pneumonia 

can also benefit from higher intake of fluid, unless 
contraindicated. The recommended amount is usually 
1 mL/kcal water or 2-3 L/d. As respiratory acidosis may 
occur following severe respiratory symptoms, serum 
electrolytes balance, especially magnesium, phosphorous 
and sodium must also be checked.

A summary of micronutrients and nutraceuticals are 
presented in Table 1. It seems that VitD supplementation 
can be helpful both as a preventive strategy and an anti-
ACE2 therapeutic agent in COVID-19 management 
to maintain its serum level at normal range, but avoid 
the vitamin toxicity. VitC can also help avoid and cure 
respiratory and systemic infections by enhancing the 
immunity. However, further studies are needed to confirm 
the potential effect of VitC on severe viral respiratory 
tract infections especially in case of the recent COVID-19 
epidemic. As VitA has a wide range of immunological 
functions and contributes to the first-line defense of the 
body, it appears that VitA might be promising in the 
prevention and treatment of lung infections associated 
with COVID-19. However, due to potential adverse 
effects, VitA supplements should be administered for 
those with evidence of VAD. 

The optimum intake of VitE required for better 
immunity function has not been reported, likely due to 
prior VitE status and the person’s comorbidities; though 
studies have reported effective immune dosage of 200–800 
mg/d. Given the effects of VitB complex, especially B6, B9, 
and B12 on the immunity, further studies are warranted 
to evaluate the efficacy of VitBs intakes at higher dosages 
than recommended for the prevention and/or reverse of 
immune system impairments. 

In terms of trace elements, it appears that adequate 
intake of Zn is essential for proper function of the immune 
system; however, there might be some health hazards in 
case of excessive Zn intake. Therefore, precautions should 
be taken when it comes to supplementation of zinc for the 
prevention or treatment of infections. It is also essential to 
restrict iron intake in times of either potential or existing 
infections, but to have an adequate daily intake, based 
on the RDA, to maintain an optimum immunity and 
prevention of viral infections. Moreover, evidence show 
that adequate selenium intake or its supplementation 
within safe dose might be promising in the prevention and 
treatment of respiratory infections including COVID-19.

Based on current limited studies, it seems that adequate 
intake of alpha linolenic acid, phytochemicals and 
probiotics may help boost the immune system and prevent 
or even treat viral infections. 

Finally, the present review tried to help the health 
practitioners to effectively manage patients with 
COVID-19 by taking nutritional considerations more 
into account. However, further well-designed clinical 
trials are needed to confirm the efficacy of nutritional 
recommendations and determine their effective dose 
during the outbreak of respiratory viral infections. 

Box 1. Summary of energy and macronutrients 
requirement for the management of COVID-19
1.	 Notice regular nutrition assessment of patients 

considering anthropometry, laboratory, and 
clinical data to avoid malnutrition.

2.	 Design an individualized diet with energy intake 
of approximately 30 to 35 kcal/kg IBW and 1.2-
1.5 g protein/kg IBW to meet hyper-metabolic 
requirements of patients with COVID-19 
pneumonia. 

3.	 Consider adequate amount of dietary fat (35%-
40% of total calories) especially during ARDS and 
appropriate proportion of fatty acids (EFA, PUFA, 
and MUFA)

4.	 Prevent or correct dehydration using enough 
fluid intake (2–3 L/d) between meals, unless 
contraindicated. 

5.	 Start PN when enteral nutrition has failed or 
during severe malabsorption. 

6.	 Provide small, frequent feedings to reduce food 
reflux and aspirations.

7.	 Support lung function and prevent additional 
concomitant infections with higher intake of 
antioxidant and anti-microbial nutrients as 
discussed in detail through dietary sources or 
supplements, if needed (PN).

8.	 Plan a healthy diet during enteral feeding, 
considering adequate nutraceuticals intake 
including prebiotics, probiotics, and 
phytochemicals 
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