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Review Article

Introduction
In 1938, G.S. Callendar suggested a link between the 
increase in carbon dioxide production and the rise in 
the temperature.1 Carbon dioxide and other gases can 
cause “greenhouse” effects, trapping infrared radiation 
from the sun and causing a rise in global temperature.2 
This rise increases the sea level (by melting icebergs) and 
moisture evaporation (which results in more extreme 
rainfalls).3 The rise in global temperature also causes an 
increase in the monthly hottest temperature. Alongside 
global warming, the human population is also growing. 
Together, these scenarios increase the number of 
mortalities, morbidities, and health-related outcomes, 
especially in the elderly age group.4,5 Studies show that 
high temperatures are responsible for 0.46% of disability-
adjusted life years,6 and over the last ten years, there 
has been a 600% increase in heat-related cardiovascular 
disease.7 Climate change can increase infectious diseases 
(due to lower immune response) and non-communicable 
diseases. The main organs affected by climate change are 
cardiovascular, Respiratory, and central nervous system 
(CNS) diseases.8-11 Microbes, neurotoxins, air pollutants, 

and heat stress contribute to the CNS damage.10,12 Climate 
change can affect the pattern of the ecosystem and increase 
the rates of meningitis and encephalitis. Heat waves are 
shown to increase the mortality of stroke,13 significantly. 
It has also been proposed that patients taking CNS 
medications are more likely to suffer from heat waves.14 
These all indicate a complicated relationship between 
climate change and CNS-related disease. This review 
investigates different aspects of brain disease resulting 
from or affected by climate change.

Methods
We searched for relevant literature in PubMed, Scopus, 
and Web of Science (WOS) for the relevant studies. The 
keywords used were “climate change,” “global warming,” 
“neurodegenerative disease,” and “nervous system. 
“The Following search strategy was used in PubMed: 
((“neurodegenerative disease”[Title/Abstract]) OR 
(“nervous system”[Title/Abstract])) AND ((“climate 
change”[Title/Abstract]) OR (“global warming”[Title/
Abstract])). The databases were searched for original 
studies until the 1st of January 2024. There was no 
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ARTICLE INFO Abstract
Background: Global warming is caused by increased carbon dioxide and other industrial gases, 
which shift the climate of human habitat and environment, impacting human health globally. 
In this review, we tried to overview the current knowledge of climate change’s impact on 
neurological disease. 
Methods: A comprehensive search on PubMed, Web of Science (WOS), and Scopus was conducted 
to find the relevant original studies. Language, sex, age, date, or country of study were not restricted. 
Included studies report increased Alzheimer’s disease mortality and hospital admission.
Results: This increase was seen from the first day with high temperature to 3-4 days later. 
Parkinson’s disease (PD) subjects were more vulnerable to high temperatures compared to 
dementia patients (RR for dementia: 1.29 and for PD: 1.41). Global warming was linked to 
the increase in the incidence of Tick-borne encephalitis (TBE) (from 0.1% to 5.4%), Japanese 
encephalitis (OR: 2 when floods occur), and ciguatera fish poisoning (CFP) (RR: 1.62 for each 
1◦C increase per month). 
Conclusion: Health-related consequences of climate change are inevitable. The burden of 
medical problems related to the elderly population (especially the elderly with dementia), 
infectious diseases, and CFP on the healthcare system will naturally increase. Studying global 
warming trends could empower us with more precise predictions of the future and better 
planning to face climate change-related challenges.
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limitation on the Age, sex, language, or country of the 
study. Original studies investigating the effect of climate 
change on neurodegenerative disease, CNS-related 
infections, headaches, and ciguatoxin were included. 
Excluded criteria were as follows: review studies, in 
vivo studies, animal studies, book chapters, conference 
abstracts, and letters. Studies were reviewed by title and 
abstract, and the eligible ones were included. In the next 
step, the full text of the studies was reviewed for eligibility, 
and irrelevant studies were excluded. All the screening 
steps were done by two authors, and any disagreements 
and uncertainties were resolved through discussion and 
the help of a third reviewer. Figure 1 provides the PRISMA 
flow diagram of our study.

Climate change and neurodegenerative disorders
The hypothalamus is the center of body temperature 
regulation,15 and hypothalamic dysfunction is reported 
to happen in dementia cases and Parkinson’s disease 
(PD).15-17 The senile community is more likely to develop 
dementia, making them more vulnerable when facing 
temperature changes. Senile patients are also at a higher 
risk of suffering from dehydration, lowering the reserve 
for body temperature regulation.18 Also, drugs taken by 

them for various diseases (e.g., anticholinergics, diuretics, 
and dopaminergic drugs) could contribute more to 
these mechanisms,19,20 reducing the elderly population`s 
compliance against climate change.21

In 2022, Bongioanni et al22 gathered the epidemiologic 
data (prevalence, death, and DALYs) of 3 neurodegenerative 
diseases (Alzheimer’s disease [AD], PD, and amyotrophic 
lateral sclerosis) and climate change data from 1990 to 
2016. They classify countries based on temperature and 
rate of temperature increase (warming index) in four 
regions: high temperature-high warming (HT-HW), high 
temperature-low warming (HT-LW), low temperature-
high warming (LT-HW), and low temperature-low 
warming (LT-LW). Their analysis shows a higher warming 
index in countries with lower temperatures. PD was the 
only neurodegenerative disease affected by the climate 
change. HT-HW regions increased the PD death rate, and 
DALLY and a warming index positively correlated with 
PD prevalence. These results could indicate that neurons 
behave differently when facing climate change, and their 
susceptibility to temperature rise differs.

The temperature range in the Bongioanni et al22 study was 
between 15.9 °C and 29.1 °C in 2016. But does the colder 
environment always have a protective effect? Another 

Figure 1. PRISMA flow diagram
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survey by Yin et al23 proposes that colder and higher 
temperatures increase the mortality of neurodegenerative 
disease, and there is a protective temperature at which 
the death rate is minimal. Their study had a temperature 
range of 3.7–24.4 °C and five different climate zones 
(high alpine zone, temperate continental zone, temperate 
monsoon zone, tropical monsoon zone, and subtropical 
monsoon zone). The best protective temperature for 
dementia was 24-26 °C, and for PD, it was 18.3 °C. 
They proposed the relative risk (RR) of extremely high 
temperature (97.5th percentile) mortality in comparison 
to minimum death temperature for dementia and PD to 
be 1.29-1.41.23 These are in line with previous studies.22 
PD affects areas in the brain in which neurons are more 
susceptible to temperature rise, and with the current trend 
in temperature, the PD burden will likely increase.

A rise in temperature can increase hospital admissions 
over some time, starting from the same day and continuing 
for 3-4 days.24,25 From 1998 to 2009, admissions increased 
at a rate of 4.5% for each 1 °C rise in temperature from 17 
°C in the United Kingdom.25 These admissions are also 
predicted to have a 263% increase in 2040 compared to 
2009. As the age of the population group increases, the 
expected numbers also rise. For example, for > 85 years 
old, 75-84 years old, and 16-74 years old, the increase in 
2040 admission was predicted to be 604%, 243%, and 49%.

Temperature variability also shows an increasing trend 
because of climate change.26 Temperature variability 
can cause more extreme weather conditions and affect 
the patients. A cohort study in 2019 by Wei et al27 
investigates the relationship between dementia-associated 
hospitalization and seasonal temperature. They report a 
12% increase in hospital admissions with every 1.5 °C 
increase in temperature during summer. They also say 
temperature variability could increase hospital admissions 
regardless of season (hazard ratio [HR] of 1.07 for 0.5 
°C increase in temperature variability). This study only 
included patients older than 65, and older individuals are 
less flexible to temperature variability. Dementia patients 
are probably at more risk compared to age-matched non-
dementia subjects because of higher thermoregulatory 
disorders incidence in the former group.17

Air pollution, which is a primary culprit for climate 
change, can directly affect dementia and AD. One 
retrospective study of over 50-year-old individuals from 
1991-2010 revealed a HR of 1.40 for each 10 µg/m3 annual 
increase in N2O concentration.28 Urban green planning 
is a strategy to reduce the effects of pollution in urban 
places and improve health outcomes. A cohort study of 
109 688 participants (over 45 years old) was included 
to evaluate the risk of dementia between locations with 
different urban green spaces. A lower incidence and 
better outcome of dementia (HR = 0.86) was reported in 
locations with > 30% tree canopy.29

Climate change and migraine
Migraine is usually a unilateral throbbing headache 

primarily affecting females and patients in low to mid-
income countries.30 A case-crossover study from 2000-
2007 with 7054 headache patients (2250 migraine and 
4803 other types) reveals the odds ratio (OR) of acute 
headache for a 5 °C increase in temperature to be 1.075.31 
This study fails to show a lag between temperature rise and 
headache attacks or a relation between headaches and air 
pollution. Another study included 102 under 17 years old 
children accused warm temperatures to trigger migraine 
attacks in 68.8% of cases.32 In 2019, a prospective study 
of 98 adults was followed for 45 days33 and determined 
that in warm seasons, higher humidity is associated with 
migraine headaches. These all show a possible increase in 
migraine attack burden caused by global warming.

Climate change and infections
As the climate changes, the environment of humans and 
other living creatures alternates. With climate change, 
more rainfall, floods, increased seawater levels, and less 
humidity are expected.3 These could favor the habitat of 
vector-borne diseases, as their vectors (e.g., mosquitoes) 
could grow and reproduce faster and survive longer.34

Temperature variability could affect infectious disease 
rates as well as neurodegenerative disease. Meningitis 
is considered a life-threatening inflammation of 
leptomeninges.35,36 Because of the high incidence of 
meningitis in sub-Saharan Africa, it is called the meningitis 
belt.37 Meningitis tends to cause epidemics in these areas, 
especially in hot, dry seasons.38 Also, wider temperature 
variability due to a rise in maximum temperature 
increases the incidence of meningitis with a logarithmic 
pattern.39 Elderly and male populations in Australasia and 
central sub-Saharan Africa are more susceptible to these 
changes.39 Increasing meningitis surveillance, especially 
in hot regions affected by global warming, could decrease 
the disease burden and better control the epidemics.

Tick-borne encephalitis (TBE) is an important zoonotic 
viral disease in Asia and Europe,40 especially in temperate 
climate countries.41 Tick-bite and dairy consumption are 
transmission methods of the virus with a summer seasonal 
pattern for TBE because of the vector’s life cycle.42,43 TBE 
epidemiological pattern (even in a particular country) is 
affected by geography and climate.44 Rising temperatures 
due to climate change can favor the virus-host environment 
and increase the incidence of TBE. Most studies on TBE 
and climate change are in Russian academic literature, 
focusing on northern territories (especially Arkhangelsk) 
of Russia.45-51 In 2011, Tokarevich et al50 hinted at an 
increase in annual TBE incidence in Arkhangelsk Oblast 
from 0.1 in 1980-1989 to 5.4 in 2000-2009. Expanding the 
study period to 42 years, Tokarevich et al52 found similar 
results. They also calculated the normalized difference 
vegetation index (NDVI) to estimate the environmental 
changes resulting from climate change and predict the 
Ixodid Ricinus population (a vector for TBE virus). 

Another study by Neh et al52 tried to predict the future 
status of the TBE virus enzootic cycle in 2021-2050 
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and 2071-2100. They used the TBE monthly average 
temperature from 1961-1990 with ALADIN-Climate 4.5 
and RegCM 3.1 climate models for the task. Their result 
predicates a 31% (2021-2050) and 50% (2071-2100) rise 
in the basic reproduction number of TBE virus compared 
to 1961-1990. Humans are incidental hosts of the TBE 
virus.53 Still, an increase in the enzootic cycle transmission 
could increase human transmission since the burden of 
diseases is higher.

In contrast to previous studies, Palo et al54 focus on the 
relationship between TBE incidence in Sweden and the 
North Atlantic Oscillation (NAO). They used climate 
data from 1976 to 2011 but found no relation between 
TBE cases and summer/winter temperature. Multiple 
variants (e.g., socioeconomic state or human impacts 
on the environment) could influence the TBE incidence 
and affect the results seen in this paper. There is no 
specific anti-viral treatment for TBE, and with the current 
direction of TBE incidence, it seems essential to execute 
vaccination programs in endemic areas.55

Japanese encephalitis (JE) is a mosquito-borne viral 
disease primarily seen in Asia and the western Pacific.56 JE 
tends to have an outbreak in hot seasons with rainfalls in 
areas lower than 3000 meters altitude.57-59 Climate change 
can affect JE incidence by different means. A temperature 
of more than 21-25.2 °C threshold is proposed to increase 
JE incidence because a larger mosquito population 
could survive.60 Studies investigating the effects of 
climate change on the JE virus were mainly conducted 
in China,60-62 and India.63 A survey by Murty et al63 
suggests a temperature of 22.8-34.53 °C as the threshold 
for appropriate mosquito habitat. Humidity and jungle 
areas are other factors affecting JE epidemiology. JE 
cases increase when the humidity is more than 65% and 
NDVI of 150.61 Hot weather also increases rainfalls and 
floods, perfect scenarios for vector-borne disease. In 
a 5-year study with 370 JE virus-infected individuals, 
flood significantly increased the odds of JE (OR: 2.00).62 
Much like TBE, JE could be prevented by vaccination, 
and routine vaccination of the at-risk population may be 
needed to avoid disease outbreaks.

Climate change and poisoning
Ciguatera fish poisoning (CFP) is caused by a potent 
neurotoxin named ciguatoxin from Gambierdiscus 
species.64 The toxin accumulates in fish, and humans 
consuming the contaminated fish get the illness.65 

Nausea, vomiting, diarrhea, pruritus, paresis, cold 
allodynia, muscular disorders, paresthesia, and behavioral 
disorders are the symptoms of consuming ciguatoxin-
contaminated seafood.66-69 Ciguatoxin binds to membrane 
voltage-gated sodium channels and causes an increase in 
neurotransmitter release and cell swelling.70 Cook Island,71 
the French peninsula.71,72 the Great Barrier Reef,73 the 
Caribbean Sea, and the Mexican Gulf,74-76 were the most 
common places studied for CFP.

Studies show that Gambierdiscus dinoflagellate survives 

in a temperature range of 17.5-32.5◦C, and a sea surface 
temperature of ≥ 29 °C is the best temperature for the 
replication of the organism.74,77,78 By analyzing the 
incidence of CFP in the United States from 2001-2011, 
Gingold et al75 calculate the RR of CFP, calling for a 1 °C 
rise in sea surface temperature for one month is 1.62. they 
also showed that even one storm per month increases 
the CFP calls (RR: 1.11). The authors also predicted a 
200%-400% increase in CFP incidence with a 2.5-3.5 °C 
rise in sea surface temperature. The time lag between sea 
surface temperature and CPF cases differs from location 
to location. The reported time lag for Cook Island was 12 
months,71 and for the French peninsula was suggested to 
be 13-17 months,72 or 32 months.71 With the continuous 
rise in temperature, more heat-resistant species could 
survive better, and a possibility of change in the dominant 
species of Gambierdiscus microalga is not far.76

Water salinity is another environmental variant that 
could influence ocean wildlife. The salinity shall increase 
due to more water vapor,79 which can also affect the life 
habitat of Gambierdiscus microalga. By studying the 
dinoflagellate synthesizing ciguatoxin growth, higher 
ocean salinity was proposed to increase the number of 
organisms.73 There is no specific antidote or lab test for 
ciguatoxin, and the diagnosis is mainly based on clinical 
signs and symptoms.80 With the global warming trend, 
doctors must have a high suspicion of CFP, especially in 
the summer.

Discussion
Air pollution and climate change are shown to affect 
diseases with different mechanisms. In this review, 
we showed that dementia and dementia treatment 
cause thermal dysregulation, putting patients at risk 
when they face extremely hot or cold weather. Some 
studies propose a protective temperature for dementia 
mortality,22,23 while others report an increase in dementia-
related hospitalization.25,27 These findings may seem 
controversial, but it is also possible that climate change’s 
relation with dementia-related mortality differs from 
dementia-related morbidity. It is also noteworthy that 
the effect of climate change on each neurodegenerative 
disease is different because the site and neuronal damage 
in patients differ. PD is reported to be more vulnerable to 
heat compared to AD. Both diseases are shown to cause 
hypothalamus dysfunction, but the degree, type, and 
time of dysfunction occurrence after patients’ primary 
diagnosis may contribute to the reported difference.

Global warming will change the habitat of all the 
creatures on Earth. These changes will benefit some 
while harming others. As the temperature rises, the 
environment favors some infectious diseases. TBE and 
JE incidences will increase because their vectors will have 
more chances of survival. To counter these phenomena, 
stricter vaccination programs are needed. There are also 
new emerging ways to control vector-borne diseases 
with various tools. Ways to use in this fight are genetic 
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manipulation vectors or the use of Wolbachia parasites to 
decrease the reproductive output of mosquitos.81,82

CFP is another disease affecting humans, and it will 
likely benefit from global warming. Included studies show 
a rise in the growth rate of ciguatoxin synthetizing species 
as global warming continues its current trend. There 
was also a lag time between global temperature change 
and CFP incidence. In the past, CFP has had multiple 
outbreaks (e.g., six outbreaks in Germany between 2012-
2017).84 This lag time could help us estimate the CFP 
incidence every year before it happens and be ready for 
possible outbreaks of CFP.

Conclusion
In this study, we tried to overview the possible effects of 
climate change on neurologic disease. Global warming 
and climate change will affect many aspects of human 
neurologic health. The provided data confirms a 
possibility of a future increase in the healthcare burden of 
neurologic disease, but the actual intensity of this impact 
is indefinite. Studying and predicting climate change 
and finding the relationship between public health and 
global warming is challenging. Multiple variants (such as 
race, age, sex, comorbidities, etc.) are involved in human 
health. There was a vast heterogeneity in methods and 
results of studies emphasizing the difficulty of researching 
this subject. A tighter surveillance on climate change and 
climate-change-related health problems is needed to 
understand better and predict the future. 

Limitations
Other neurological conditions can also be affected by 
global warming, which were not discussed in this review. 
Increasing temperature can affect neural transmission 
and affect other neurological diseases, such as multiple 
sclerosis and myasthenia gravis. This change can cause 
a worsening in the symptoms and possibly need for an 
increase in the doses of drugs, which in turn increases the 
rates of side effects. For future studies, we recommend 
investigating the effects of temperature rising on the 
incidence of exacerbations in myasthenia gravis and 
multiple sclerosis.
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